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PBACalib: Targetless Extrinsic Calibration for
High-Resolution LiDAR-Camera System Based on

Plane-Constrained Bundle Adjustment
Feiyi Chen1, Liang Li2, Shuyang Zhang1, Jin Wu1 and Lujia Wang1

Abstract—The strategy of fusing multi-model data, especially
from cameras, light detection and ranging sensors (LiDAR), is
frequently considered in robotics to enhance the performance
of the perception and navigation tasks. Extrinsic calibration,
which spatially aligns different sources into a unified coordi-
nate representation, directly determines the performance of the
combined data. In this paper, we propose PBACalib, a novel
targetless extrinsic calibration algorithm aiming at the dense
LiDAR-camera system based on the plane-constrained bundle
adjustment (PBA). The proposed method utilizes the feature
points derived from a prominent plane in the scene and iter-
atively minimizes the reprojection error. A maximum likelihood
estimator (MLE) is designed by considering the uncertainty
information of the measurements. Furthermore, we explore the
distribution of collected data and characterize the robustness and
solvability of the extrinsic estimates using a confidence factor.
Simulation and real-world experiments both qualitatively and
quantitatively demonstrate the robustness and accuracy of our
method. The comparison experiments show that the proposed
method outperforms another targetless method. To benefit the
community, Matlab code has been publicly released on Github.

Index Terms—Targetless extrinsic calibration, High-resolution
LiDAR, LiDAR-Camera calibration, bundle adjustment.

I. INTRODUCTION

IN robotic systems, LiDARs and cameras, as the most
commonly used sensors, compensate each other by pro-

viding rich texture information and 3D measurements of the
environment. Extrinsic calibration becomes essential to fuse
these two types of data into the same coordinate system,
especially for conducting automated tasks in a complicated
environment, like tightly coupled SLAM, colorization, etc. In
this paper, our work explores the extrinsic calibration problem
in dense LiDAR-camera system.

In the autonomous driving industry, the resolution of the
LiDAR equipped on the vehicle grows rapidly with reduced
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Fig. 1. Data representation in different sensors and calibration result. (a) 3D
structure and camera poses recovered from SfM. (b) Point cloud from Livox
(c) Reprojection result after calibration. Different colors represent different
intensity values acquired from point cloud

cost and the release of new solid-state LiDAR (e.g., Livox).
However, most existing works focus on mechanical LiDAR
(e.g., Velodyne) and rely on prepared artificial targets, such
as checkerboard [1], circle [2], and sphere [3], which are
sometimes unavailable. Besides, it is challenging to implement
some old methods on dense LiDAR because of different data
structures. For instance, the large number of bleeding points
that exist around depth-discontinuous edges in dense LiDAR,
as explained in [4], degrade the performances of some edge
extraction algorithms, like [1] [5]. Moreover, zero-valued and
multi-valued mapping problems [4] also make the mutual
information-based method [6] unstable. On the other hand,
the mounting position and orientation of sensors depend on
the actual needs, and it fails some calibration methods. For
example, the targetless methods, like [4], resort to the depth-
continuous edges of the environment. In this case, LiDARs
need to be mounted upwards to observe enough edges of the
buildings for the calibration, which is not practical in some
cases, as shown in Fig. 2, with LiDAR installed toward the
ground.

Considering the above challenges, we propose PBACalib,
which captures several pairs of images and point clouds around
a plane with arbitrary texture to calibrate. Three different fea-
tures are utilized for the extrinsic calibration, which contains
plane coefficients in the LiDAR frame, pixel feature points
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Fig. 2. LiDARs are installed towards ground

and restored 3D points in the camera frame. To ensure con-
vergence, the extrinsics are found in a coarse-to-fine manner.
Camera poses and the extrinsics are optimized simultaneously
by iteratively minimizing the reprojection error. Specifically,
our contributions can be summarized as follows:
• A novel targetless extrinsic calibration method for high-

resolution LiDAR and camera based on plane-constrained
bundle adjustment. It only needs a common textured
ground, wall, or other planes to accomplish the calibra-
tion.

• Validity analysis on the collected dataset. We theoretically
analyze the distribution of the collected data and intro-
duce a confidence factor to determine whether the input
data is sufficient for calibration. Specific requirements are
listed to guide users to stabilize the calibration result,
which are: 1) we need at least four poses; 2) the target
planes do not intersect at the same point; 3) at least three
normal vectors are non-coplanar.

• Evaluated with various simulation, real-world and com-
parison experiments, which reveal that the proposed
method is accurate and robust. To benefit the community,
we publicly release the source code on Github1.

II. RELATED WORK

In the literature, the extrinsic calibration between camera
and LiDAR can be summarized into two categories: the target-
based and targetless methods.

Target-based methods calibrate the extrinsics using artificial
objects, like a checkerboard [1], calibration room [7], custom-
built calibration pattern [8], etc. Compared with the targetless
method, the estimation of the extrinsics is usually more
accurate and robust for knowing the prior information of the
targets, like the geometric size, shape, and texture. However,
the calibration targets need to be prepared in advance, which is
not practical sometimes in real applications. Specifically, Zhou
et al. [1] extracted the geometric boundary of the checkerboard
in both camera and LiDAR data, and the extrinsics are refined
by iteratively minimizing the points-to-line and points-to-plane
distance. Xie et al. [7] built a room pasted with fiducial
markers (Apriltag) to calibrate multiple cameras and LiDARs
even without common field of view (FoV). The poses of
cameras and LiDARs are calculated precisely by leveraging
fiducial markers and the geometry of this room respectively,
while the cost of building this room is not affordable for most
users.

Targetless methods find the natural features around the
environment, like objects [9], edges [4] and data intensity [6],

1https://github.com/chenfeiyi/PBACalib

to align cameras and LiDARs. They can also be gener-
ally characterized into two categories: registration-based and
motion-based methods. For the registration-based methods, the
measurements are aligned by extracting the common features
from multi-model sensors in the common FoV. For example,
Pandey et al. [6] found the distribution of reflective intensity
and pixel intensity are similar, and the mutual information
reaches a maximum when the extrinsics are correct. However,
it suffers from illumination problems in images and sparser
LiDAR, like 16-beam LiDAR is not applicable. In contrast,
the motion-based methods first estimate the sensors’ ego poses
separately from multiple frames of data and find the extrinsics
using hand-eye calibration [10]. For instance, Horn et al. [11]
utilized dual quaternion to find the global optimal solution
even in planar motion cases. Taylor et al. [12] introduced
a measurement noise model to drive a more stable solution
in an unconstrained environment. Recently, Wu et al. [13]
summarized the pose estimation problem into general QPEPs
in a unified quaternion framework, which contains many
algorithms used in target-based and targetless calibration, like
PnP, hand-eye calibration, point-to-plane registration, etc.

For dense LiDAR, more research [4] [14] [15] have come
out in recent years. As stated in [14], the data distribution
and non-repetitive scanning style make Livox different from
mechanical LiDAR, and it is challenging to generalize pre-
vious methods on Livox. By considering these differences,
they proposed their method on data processing and feature
extraction, followed by RANSAC PnP to align 2D-3D interior
pattern corners on the checkerboard. On the other hand, Yuan
et al. [4] fully utilized the dense representation of the point
cloud to extract depth-continuous edges from the structural
environment. The extrinsics were iteratively optimized by
aligning 2D-3D edges. In addition, some calibration tech-
niques used in other active depth sensing devices are also
applicable to LiDARs. For example, Zeisl et al. [16] used
the sparse map recovered by SfM as a geometric prior and
minimized the alignment error iteratively to find the intrinsic
and extrinsic parameters simultaneously in RGB-D camera.

Compared with the previous methods [1] [14], our method
achieves accurate results without using any prepared targets.
Compared with [11] [17], we need fewer poses. Specifically,
four frames are enough. Moreover, compared with [4], the
calibration scene in our method is easier to find, and our
method is less sensitive to the initial parameters. Our method
can still work using a inclined plane near the ground when
the sensor suite is mounted on the vehicle toward the ground.

III. PROBLEM STATEMENT

Our PBACalib chooses a plane with arbitrary texture to
calibrate and collects several frames of data. The plane on
both sensors is extracted using plane-RANSAC fitting. As
the images are 2D measurements, the structure from motion
(SfM) and PBA is implemented separately to calculate the
camera poses. Finally, the extrinsics are initialized in a closed-
form solution and also optimized by PBA. By introducing the
measurement noise model, an MLE estimator is designed to
iteratively minimize the residual function. And the PBA and
MLE are further explained as follows.
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TABLE I
NOMENCLATURE

Notation Explanation

()w, ()ci , ()li Frame of the world, i-th camera, and i-th frame LiDAR
T Transformation in the Lie group SE(3)
R Rotation in the Lie group SO(3)
t Translation in R3

s Global scale factor in camera poses
x State vector
Π Plane coefficients in R6

n Plane normal vector in R3

p̄ A 3D point on the plane
u 2D pixel point in image
K Camera intrinsic matrix
w Zero-mean Gaussian noise
Ξ Covariance matrix of the state vectors
Σ Covariance matrix of the extracted features
Λ The information matrix of the state vectors
J Jacobian matrix of the state vectors

A. Plane-Constrained Bundle Adjustment

The conventional SfM algorithm recovers the camera poses
and 3D structure simultaneously by minimizing the reprojec-
tion error, which is proved to be very effective. In special
cases, the prior information can be integrated into optimization
to further increase the accuracy. For example, the plane
information we used in our calibration. After the initialization
of SfM, the camera poses C = {Tc1 ,Tc2 , ...,TcN }, 2D feature
points in i-th frame Uci = {uci1 , ...,u

ci
Mi
}, and the 3D structure

points Pw = {pw1 ,pw2 , ...,pwM} in the world coordinate system
are recovered. Tci denotes the transformation from world
coordinate system to i-th frame camera coordinate system.
By introducing the plane information of the environment, the
camera poses can be further refined using the PBA [18].
The geometric relation is shown in Fig. 3. Generally, PBA
in our calibration is summarized into 4 steps: 1) Extract
the planes from 3D points P using plane-RANSAC fitting
iteratively. Only the plane Πw = [nw>, (p̄w)>]> ∈ R6×1

with the most 3D points is kept; 2) Find the new 3D plane
structure points Pci = {pci1 , ...,p

ci
k , ...} in i-th frame camera

coordinate system based on Uci and Πw; 3) Reproject the 3D
points Pci into j-th frame image plane, and the projected 2D
points are represented by Ûcj = {ûcj1 , ..., û

cj
k , ...}; 4) Refine

camera poses by minimizing the reprojection error between the
projected points Ûcj and the detected 2D feature points Ucj
in j-th frame. Specifically, the new 3D plane structure points
Pci are the intersection between the plane Πw and the light
ray across the 2D feature points Uci and the camera origin,
which are derived by

pcik = f(Tci ,Πw) =
tci>Rcinw + nw>p̄w

qcik
>Rcinw

qcik , (1)

where qcik = K−1[ucik
>, 1]> denotes the unit depth back

projection. The plane normal nw is the eigenvector associated
with the minimum eigenvalue of the points covariance matrix

S =
1

M

M∑
i=1

(pwi − p̄w)(pwi − p̄w)>, p̄w =
1

M

M∑
i=1

pwi . (2)

(a) SfM (b) PBA

Fig. 3. The SfM and PBA. The orange points denote the 3D points recovered
from SfM. The blue points are the intersection between the plane and the light
ray. The notation refers to Table. I

The reprojection error between Ûcj and Ucj is formulated as
follows,

ek =
1

zk
K(Rcj

ci p
ci
k + tcjci )− u

cj
k

= û
cj
k − u

cj
k , (3)

[xk, yk, zk]
> = K(Rcj

ci p
ci
k + tcjci ), (4)

Rcj
ci = RcjRci>, tcjci = tcj −RcjRci>tci , (5)

where K denotes the camera intrinsic matrix.

B. Maximum Likelihood Estimation

We introduce the measurement noise into optimization and
formulate our calibration as a MLE problem. In each itera-
tion, the residual function is approximated by the first-order
expansion

ek(x) ≈ rk + Jk,xδx + Jwk
wk = 0, (6)

where x is our estimated variables, and wk is the measure-
ment noise which is subjected to zero-mean Gaussian noise
N (0,Σk). It implies that rk + Jk,xδx ∼ N (0,Σk), and the
maximum likelihood estimator is formulated as

x = argmax
x

log(
∏
k

p(Fk | x))

= argmin
x

∑
k

‖(rk + Jk,xδx)‖2(Jwk
ΣkJ>

wk
), (7)

where ‖a‖2Σ = a>Σ−1a, and Fk contains all the measure-
ments. Leveberg-Marquardt [19] method is used to iteratively
update the state vector x and solve this equation until conver-
gence. In the last iteration, the state covariance is calculated
as Ξxx = Λ−1, where Λ is called information matrix [20],
and Λ =

∑
k

Jk,x(J
>
wk

ΣkJwk
)−1J>k,x.

IV. METHODOLOGY

A. Camera Poses Estimation

Several frames of camera and LiDAR data around the
plane scene are collected in our calibration. As stated in
section III-A, camera poses and the 3D scene are recovered by
SfM and refined by PBA. In practice, we use the open-source
tool COLMAP [21] to perform sparse SfM. Specifically, the
objective function of PBA is formulated as

C = argmin
C

N∑
i=1

N∑
j 6=i

Ni,j∑
k=1

‖ek‖2. (8)
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The MLE estimator is used to iteratively find the optimal
solution. The measurement noise comes from the 2D feature
detection. The detected pixel is denoted by ucik = ucik,gt+wci

k ,
where ucik,gt represents the ground truth of the 2D fea-
ture point, and wci

k subjects to zero-mean Gaussian noise
N (0,Σci

k ). Therefore, wk = [wc1
k
>,wc2

k
>, ...,wcN

k
>]> ∼

N (0, diag(Σc1
k ,Σ

c2
k , ...,Σ

cN
k )). In practice, we set Σci

k =
σcI2×2 for all feature points, and σc = 1.5.

B. Plane Matching

Plane-constrained bundle adjustment is also used in the ex-
trinsic calibration, and the corresponding plane in the LiDAR
frame needs to be extracted. We assume that the sensor suite
shares common FoV, and the rough initial extrinsics are given
manually. Based on the previous section on which the plane is
targeted, we project the point cloud into the image and extract
the projected points near the feature pixels extracted in SfM.
As we know which feature pixels lie on the target plane, the
3D points in LiDAR frame that lie on the target plane can
be clustered. Then the plane coefficient is estimated by the
RANSAC plane-fitting algorithm. To reduce the influence of
measurement noise, we find all points close to the estimated
plane from raw data and repeatedly use plane RANSAC to
derive the final corresponding plane Πli = [nli

>
, (p̄li)>]>.

When the sensors share no common FoV, the plane corre-
spondences can also be established with other tricks. The first
method is to simplify our calibration scene and let both sensors
toward a single plane, for instance, the ground. If in a com-
plicated scenario, we can estimate LiDAR trajectory first [22].
Then the extrinsics can be initialized by conducting hand-eye
calibration [10] or given manually, and the correspondences
can be established using the nearest neighbor search (NNS)
strategy. However, this complicated situation is not discussed
in this paper.

C. Extrinsic Calibration

1) Initialization: For the initial extrinsic parameters may
be inaccurate and the optimization is non-convex, a coarse-
to-fine fashion is designed for the extrinsics estimation. In the
camera frame, as stated before, the plane Πw is extracted from
3D environment using RANSAC in world coordinate system.
Since we know the camera poses, the same plane in the local
coordinate system for the i-th frame can be calculated and
represented by Πci = [nci>, (p̄ci)>]>. Likewise, the plane in
the LiDAR frame is represented by Πli = [nli

>
, (p̄li)>]>.

The geometric relations of multiple planes constrain the ex-
trinsic parameters uniquely. Specifically, the plane normal
vectors from both sensors should be equal after transformation.
Additionally, the plane’s center point p̄li should lie on the
plane Πci after transformation, which can be formulated as

Rc
ln
li = nci , (9)

nci>((Rc
l p̄
li + tcl )− sp̄ci) = 0, (10)

where s denotes the global scale factor, and Tc
l = (Rc

l , t
c
l ) ∈

SO(3) × R3 is the transformation from LiDAR to camera
coordinate system. The rotation matrix in equation (9) has a

closed-form solution [23] based on SVD. By taking Rc
l into

equation (10), translation and scale can be derived as
A1

A2

...
AN


[
s
tcl

]
=


b1
b2
...
bN

 , (11)

Ai =
[
nci>pci −nci>

]
, bi = nci>Rc

lp
li . (12)

Therefore, the translation and scale factor are derived by
[s̃, t̃cl

>
]> = (A>A)−1A>b.

2) Refinement: Similar to the camera poses’ refinement,
the extrinsics are also optimized by PBA. The plane we used
in camera poses estimation is extracted from Pw in camera
frame, while the plane used in extrinsic calibration is the plane
extracted from the corresponding point cloud in the LiDAR
frame. Therefore, the 3D cross-point pcik associated with the
2D feature point uci,k is defined by the following equation

pcik = f(Tc
l ,Π

li), (13)

All parameters containing camera poses C and the extrinsics
Tc
l are simultaneously optimized with the following objective

function

T̂c
l , Ĉ = argmin

Tc
l ,C

N∑
i=1

N∑
j 6=i

Ni,j∑
k=1

‖εk‖2, (14)

εk =
1

zk
K(Rcj

ci p
ci
k + s̃tcjci )− u

cj
k . (15)

This loss function is solved iteratively, and our MLE estimator
is applied. The measurement noise comes from the 2D feature
detection in the camera frame and the plane extraction in the
LiDAR frame. Benefiting from [24], we can represent and
calculate the covariance of plane coefficients by Σli

n,p̄ ∈ R6×6.

Then wk = [wli
n,p̄

>
,wc1

k
>, ...,wcN

k
>]> ∈ R(6+2N)×1, and

it subjects to N (0, diag(Σli
n,p̄,Σ

c1
k , ...,Σ

cN
k )). The final state

covariance Ξxx = Λ−1xx .
For the camera poses are not our interest, parameter re-

duction is required to find the uncertainty of the extrinsics.
Specifically, the overall information matrix is represented by

Λxx =

[
ΛTT ΛTC
ΛCT ΛCC

]
, (16)

where ΛCT =
∑
k

Jk,C(J
>
wk

ΣkJwk
)−1J>k,T. Using the tool

in [20], the reduced information matrix of the extrinsics is
ΛTT = ΛTT − ΛTCΛ

−1
CCΛCT. Therefore, the covariance

matrix of the extrinsics is represented by ΞTT = Λ
−1
TT.

In the real application, the plane extraction in LiDAR may
be inaccurate, and the error may be propagated into camera
poses refinement. In this case, we fix the camera pose and only
update the extrinsics and scale factor. The residual function is
reformulated as

T̂c
l , ŝ = argmin

Tc
l ,s

N∑
i=1

N∑
j 6=i

Ni,j∑
k=1

‖εk‖2. (17)
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D. Validity Analysis

The calibration problem will degenerate with improper data
distribution. Validity analysis is needed before calibration.
In the coarse stage, the extrinsics are initialized with a
closed-form solution. The rotation matrix contains 3 degrees
of freedom (DoF), which means at least three independent
constraints are required to find a unique solution. In other
words, three non-coplanar normal vectors are required. For
translation and scale factor solved in equation (11), the matrix
A ∈ RN×4 needs full rank to find unique parameters with
4 DoF, and at least four poses are needed. Considering the
minimum requirement with four poses collected, we suppose
that the first three poses are non-coplanar, and they intersect
at the point p̄0. The first three planes are represented by
[nc1>, p̄>0 ]

>, [nc2>, p̄>0 ]
>, [nc3>, p̄>0 ]

>, and the fourth plane
is denoted by [nc4>, (p̄c4)>]>. If A is rank-deficient, the
column vectors are dependent, and we can get the following
combination

A1 = αA2 + βA3 + γA4, (18)

which can be expanded as

nc1
>

p̄0 = αnc2
>

p̄0 + βnc3
>

p̄0 + γnc4
>

p̄c4 , (19)
nc1 = αnc2 + βnc3 + γnc4 . (20)

By transposing the vector in equation (20) on both sides and
multiplying p̄0, we have

nc1>p̄0 = αnc2>p̄0 + βnc3>p̄0 + γnc4>p̄0. (21)

Subtracting equation (21) from equation (19) on both sides,
we get

nc4>p̄0 = nc4>p̄c4 ⇔ nc4>(p̄0 − p̄c4) = 0, (22)

which indicates p0 also lies on the fourth plane. Therefore, in
degenerated cases, all four planes intersect at one point. As a
result, we need 1) at least four poses; 2) they do not intersect
at the same point; 3) at least three normal vectors are non-
coplanar. In practice, we introduce a confidence factor τ to
determine whether the collected data is sufficient to find a
unique solution. Only when τ = λ4

λ1
> 4 × 10−5, the dataset

is considered as a valid collection, where {λ1, λ2, λ3, λ4} are
the eigenvalues of matrix A>A and λ1 ≥ λ2 ≥ λ3 ≥ λ4.

V. EXPERIMENTS

X
Y

Z

Z Y

X

(a)

X

Y
Z X

Y Z

(b)

Fig. 4. The sensor suite in real world and simulation. In simulation, we
bind these two sensors as a sensor suite and take Livox as the reference
coordinate system. Specifically, the extrinsic parameters’ setting is [x, y, z] =
[0.1, 0.3, 0.2]m, and [roll, pitch, yaw] = [0, π/40, π/20].

Our proposed algorithm is verified through simulation, real-
world, and comparison experiments. The simulation (as shown
in Fig. 4b) is built on Gazebo [25] and mimics the real-
world sensor suite configuration, containing one dense LiDAR
(Livox mid-70) and one frame camera. A traffic mat is placed
on the ground to supply enough texture information. In real-
world experiments, we collect four different scenes to evaluate
the performance of our algorithm, and the sensor suite (as
shown in Fig. 4a) consists of a dense LiDAR (Livox mid-
70) and a camera (SENSING-GSML-0143-H090, with the
resolution of 1280×720, and the horizontal FoV of 90◦).
During data acquisition, the camera and LiDAR are placed
statically in a position. Image and point cloud are captured
simultaneously. To fully utilize the advantage of non-repetitive
scanning pattern of Livox, point cloud is accumulated for 5
seconds to get the dense representation of the environment.

A. Simulation

In the simulated environment with the ground truth trans-
formation Tgt, we compute the transformation error with
our estimated transformation T̂ as our evaluation metric. The
transformation error contains rotation and translation error

eR = ‖(log(R>gtR̂))∨‖ = ‖(log δR)∨‖, (23)

et = ‖tgt − t̂‖ = ‖δt‖, (24)

where ()∨ converts a skew-symmetric matrix to a 3×1 vector.
Three different levels of zero-mean Gaussian noise N (0, kσ2)
are added to the LiDAR range measurements and camera data,
where k ∈ {1, 2, 3}. Specifically, the standard deviation of
noise in image is set to σc = 0.007, and σl = 0.01m in
LiDAR range measurements.

The proposed algorithm only takes the initial extrinsics to
find the corresponding planes. No matter how we change
the initial extrinsic parameters, as long as the correct corre-
spondences are built, the extrinsics after initialization would
stay close and cause few effects in the final optimization.
Therefore, instead of manipulating the given initial extrinsics,
we randomly selected N ∈ {4, 5, ..., 10} frames from the
collected 12 pairs of images and point clouds to evaluate the
performance with different data distributions. The calibration
is repeated 50 times.

Fig. 5 shows the error distribution. With more data involved,
the calibration performs better in terms of accuracy and
stability, and it reaches [0.13, 0.15, 0.2] degree in rotation and
[0.5, 0.9, 0.8] cm in translation in different noise levels.
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Fig. 5. The quantitative results in simulation. Different levels of Gaussian
noise N (0, kσ) are added into images and point clouds, where k ∈ {1, 2, 3}.
Specifically, standard deviation σc = 0.007 is set in image and σl = 0.01m
in LiDAR range measurements.
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Fig. 6. Ablation study. The calibration results after initialization and optimiza-
tion using the simulated data. The zero-mean Gaussian noise is added into
images and point clouds with standard deviation σc = 0.021, σl = 0.03m,
respectively.

To evaluate the effect of PBA, the ablation study is per-
formed. The calibration results after initialization and opti-
mization are shown in Fig. 6. It is seen that the PBA greatly
reduces the variance and increases the accuracy in rotation,
especially when the number of poses is less than 6.

B. Real-world Experiments

1) Qualitative and quantitative results: Although we add
noise to raw data in the previous simulation environment,
many differences still exist with the real world. Specifically,
the ground may not be strictly flat, and the texture is not
rich, as supported in the simulation. Moreover, the bleeding
points (as described in [4]) and connected planes reduce the
stability of extracting plane coefficients. Therefore, real-world
experiments are required to validate the proposed algorithm
further.

Based on the previous simulation result, the accuracy curve
becomes smooth when the number of poses reaches around 7.
Therefore, we randomly choose 7 frames from the collected
12 pairs of real-world data in each scene. Fig. 7 shows the
qualitative results in 4 different scenes. Two scenes (scene
1 and scene 2) capture the texture on the ground, and two
scenes (scene 3 and scene 4) capture the texture on the vertical

(a) Scene 1: the manhole cover on the
road

(b) Scene 2: the bicycle sign on the
ground

(c) Scene 3: the whiteboard with graffiti(d) Scene 4: the banner pasted on a
kiosk

Fig. 7. 4 valid calibration scenes, and the qualitative results in real world. The
projected points in (a)(b) are colorized by points’ intensity value. In (c)(d),
different colors represent different planes, which are iteratively extracted by
plane RANSAC.
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Fig. 8. The success rate. We take the ground truth extrinsics from ACSC
method (24 poses, see Table II). 7 different levels of transformation error are
added into the ground truth to see the effect of the manually given extrinsics.
Specifically, [2◦,10cm] means 2 degrees error in rotation and 10cm error in
translation. In each setup, 50 test runs are conducted.

plane. Fig. 9 shows the distribution of the extrinsics in each
axis. It is seen that the median values of the extrinsics among
different scenes are converged into almost the same value,
which suggests the consistency of our algorithm. However,
compared with simulation, the variance in each axis is larger
because of sparser feature points, connected planes, and the
restricted orientation of the sensor suite.

In our method, we find the extrinsics via plane features,
which are the principal component of the point cloud. In
this way, our calibration is less sensitive to the initial pa-
rameters. To illustrate this, an experiment is conducted to
see the success rate of our calibration in different scenes,
shown in Fig. 8. Seven different levels of manually given
extrinsic error are added, which are [2◦,10cm], [5◦,15cm],
[10◦,20cm], [15◦,25cm], [20◦,30cm], [25◦,35cm], [30◦,40cm].
Specifically, we take the extrinsics from ACSC method (24
poses, see Table II) as the ground truth, and [2◦,10cm] means
2 degrees error in rotation and 10cm error in translation.
The rotation axis and translation error direction are sampled
uniformly on the surface of a sphere. In each setup, 50 test runs
are conducted. The calibration will be considered successful
when rotation and translation error is less than 0.5◦and 5cm,
respectively. As we can see in Fig. 8, the tolerance in scene 1
could be [30◦, 40cm] or even higher.

2) Bad scenes: As detailed in the previous sections, the
camera poses are restored using PBA, which requires the
textured plane. Moreover, in the matching stage, the target
plane is located by plane RANSAC, and this plane contains
most feature points. For these requirements, the calibration
may fail in some calibration scenes, like the scenes shown in
Fig. 10. The background in scene 5 is complicated. The arrows
and zebra crossings on the ground can also be recovered
by SfM, which will affect the target plane selection. If the
ground is selected as the target plane, the planes’ distribution
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Fig. 9. The distribution of the extrinsic parameters in four different scenes.
The nominal part has been removed.
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(a) Bad scene 5

3cm

(b) Bad scene 6.

Fig. 10. Bad calibration scenes. The zoom-in picture in (b) is taken from the
side view.

may not be good enough. Meanwhile, many cars pass on the
road, which causes the accumulation of 3D points of cars
into the final dense point cloud, and further makes the plane
matching inaccurate. Note that the background of scene 4 is
also complicated, but the feature points on the target plane are
much denser. In scene 6, the text is above the plane, which
causes bias in translation, but we can manually eliminate it.

C. Comparison Experiments

We compare our method with [14], [4]. ACSC [14] uses
standard checkerboard to calibrate the extrinsics by aligning
inner pattern corners and solves the PnP problem. Delicate
data preprocessing is designed, and the intensity channel in
the point cloud is utilized to extract inner pattern corners. As
the checkerboard is also a plane with texture, we modify our
camera pose estimation algorithm and use the checkerboard
to calibrate. Based on the guideline of the ASCS open source
code, 12 pairs of data are required to ensure robustness.
Similarly, we collect 24 pairs of data and randomly select
12 frames to repeatedly conduct calibration on both methods.
Fig. 11 shows the distribution of the extrinsics and the scale
factor after repeating 20 times. ACSC performs a little better
in terms of stability, but the variance of both methods is small
enough to get accurate extrinsic parameters. On the other hand,
we do not need the pattern size of the checkerboard, and the
scale factor is estimated accurately, as shown in Fig. 11. The
projection result is shown in Fig. 12 using both methods. The
extrinsics are chosen from the median value on each axis. We
can barely find the difference between each other.

Yuan’s [4] method utilizes the environment depth-
continuous edges as the feature to calibrate, which is quite
different from ours. As the perfect ground truth of transfor-
mation is unavailable in the real world, we take the extrinsics
calibrated from ACSC as a comparison and use all poses (24
poses). To fairly compare with [4], we use [4] to calibrate
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Fig. 11. The distribution of the extrinsic parameters and scale factor using our
method and ACSC. In contrast, our method does not require priori information
of the checkerboard size.

ACSC

(a) ACSC [14]

ours

(b) Ours

Fig. 12. The projection results of both methods, which shows that our method
achieves comparable accuracy with ASCS.

three times using their open-sourced code with 1, 4 and 7
poses, respectively. Similarly, our method is conducted twice
as well with 4 and 7 poses respectively. Table II shows the
final result. It indicates that Yuan’s method and our method
are both accurate on rotation, but our method outperforms
Yuan’s method in translation. Fig 13 presents the projection
result using both methods. We can find the mismatches marked
with the red square in Fig. 13a. The edges in this area are
not observable in Yuan’s method because they are depth-
discontinuous edges. In contrast, the projection in our method
looks better. Table II summarizes the extrinsics parameters
using different methods. As ACSC extracted inner pattern
corners in both camera and LiDAR data, we use these features
to calculate the mean projection error (MPE) based on the 2D-
3D correspondences

MPE =
1

M

M∑
i=1

‖π(pli)− uci‖. (25)

It is seen that our method outperforms Yuan’s method when
both use 4 poses in terms of MPE, which is consistent with
the projection result in Fig. 13.

Yuan 4 Yuan 4

(a) Yuan [4], 4 poses
Ours 4 ours 4

(b) Ours, 4 poses

Fig. 13. The qualitative comparison using Yuan’s approach and our method.
The projected points are colorized by points’ intensity value. In our method,
we use scene 2 (Fig. 7b), scene 1 (Fig. 7a), scene 3 (Fig. 7c) to calibrate
and take the recovered extrinsic to project the point cloud into images in (b)
respectively.

VI. CONCLUSION

In this paper, we proposed PBACalib, a novel targetless ex-
trinsic calibration algorithm for dense LiDAR-camera system
based on plane-constrained bundle adjustment. By taking the
uncertainty of the measurement into optimization, an MLE es-
timator is designed to iteratively find the optimal solution, and
the covariance of the extrinsics is given. To ensure the success
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TABLE II
THE CALIBRATION RESULT USING REAL DATA. WE TAKE THE RESULT OF

ACSC METHOD WITH 24 POSES AS THE GROUND TRUTH, MARKED IN
RED. THE BEST RESULT IS MARKED IN BOLD. ↓ INDICATES THAT THE

LOWER THE VALUE, THE BETTER THE PERFORMANCE.

Methods Rotation (degree) Translation (cm)

Roll Pitch Yaw X Y Z MPE↓
ACSC [14] (24 poses) 88.77 0.58 88.46 -0.18 6.57 -2.02 0.4

Yuan [4] (1 pose) 88.80 0.57 88.35 -5.44 8.23 8.32 19
Yuan [4] (4 poses) 88.56 0.61 88.46 -1.15 3.52 3.86 7.3

Ours (4 poses) 88.70 0.62 88.41 -1.38 8.14 -1.06 6.9
Yuan [4] (7 poses) 88.89 0.52 88.52 -0.3 7.53 3.84 4.5

Ours (7 poses) 88.75 0.76 88.41 -0.69 6.66 -2.06 1.3

of the calibration, we analyzed the validity of the collected data
and set a confidence factor to determine if it is sufficient to
make the extrinsics unique. Finally, simulation, various real-
world and comparison experiments indicated that the proposed
method is robust and outperforms another targetless method
and achieves similar accuracy compared with the target-based
method.
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